mldas.explore.single.suplearn_simple ¶
- mldas.explore.single. suplearn_simple ( model , criterion , optimizer , train_loader , test_loader , epochs = 1 , print_every = 1 , save_model = False , verbose = True ) [source] ¶
-
Simple, non-optimized, supervised training with validation step performed at regular intervals during batch iteration for single node, single processor execution.
- Parameters
-
-
model
torch.nn.Module
-
Trained model
-
criterion
e.g.
torch.nn.CrossEntropyLoss
-
Loss function
-
optimizer
torch.optim.Optimizer
-
Optimizer to perform gradient descent
-
train_loader
torch.utils.data.DataLoader
-
Input dataset for training part
-
test_loader
torch.utils.data.DataLoader
-
Input dataset for validation step
-
epochs
int
-
Number of epochs to execute the training
-
print_every
int
-
Batch interval at which both training/validation loss and accuracy are evaluated
-
save_model
bool
-
Save updated model in dictionary
-
model
- Returns
-
-
loss_hist
numpy.ndarray
-
History of loss values
-
model
torch.nn.Module
ordict
-
Final trained model or dictionary of models.
-
loss_hist